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Abstract 

An observer situated anywhere but in the equatorial plane of a high angular momentum 
Kerr field cannot see the ring singularity. In the visual field of such an observer, what 
demarcates his own universe from that through the ring ? 

The projections onto a certain submanifold of the null geodesics which pass through 
a point on the symmetry axis of a specific Kerr field are examined numerically. All the 
distinct projections are obtained by varying one parameter, essentially the quadratic 
Killing tensor constant. Various interesting features of the geodesics emerge. 

Through the ring is a region in which there exist closed time-like curves and which can 
be used to construct closed time-like curves through any non-singular point of the 
manifold. Only geodesics of negative angular momentum can enter this region. 

I t  has been shown by Carter (1968) that  only equatorial  geodesics o f  a 
Kerr  field (Kerr, 1963; Kerr  & Schild, 1964) can reach the singularity. 
The problem therefore arises as to what  exactly an observer (potentially) 
sees who is not  in the equatorial  plane. Consider, for example, an observer 
on the symmetry axis o f  the field in the 'positive r sheet'. He  will receive 
some photons  f rom his own familiar universe and others f rom the region 
th rough  the ring but  none f rom the ring itself. In  the visual field o f  such 
an observer, what  demarcates his own universe f rom the region on the 
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other side of the ring ? Surely there must be directions from which photons 
cannot arrive. In fact there are and the set of such directions does constitute 
the boundary between the two regions in the visual field of  the observer. 
However, the detailed behaviour of the null geodesics which reach our 
observer is interesting and it is worth looking at them in a particular 
numerical case. 

In Kerr-Newman coordinates (u,r, 0,~) (Boyer & Lindquist, 1967; 
Carter, 1968), by considering the Jacobi action, first-order geodesic 
equations can be obtained directly (Carter, 1968). 

(r 2 + a 2 c0s2 0)2 02 = Q _~ COS 2 0 [ a 2 ( E  2 _ / z 2 )  _ ~ 2  c o s e c  2 0] (1) 

(r 2 + a 2 cos 2 0)2 ?:2 = [E(r 2 + a 2) _ ~a]2 _ A(/z2 r 2 + K), 

A = r 2 _ 2mr + a 2 (2) 

Here E = p o ,  ~ = -P3 ,  (') denotes differentiation w.r.t, proper time or 
an affine parameter,// ,  and Q = K - ( q b _  aE)2 where K is a constant of 
the motion originally obtained from the separability of the Hamilton 
Jacobi equations (Carter, 1968) and which is associated with the quadratic 
Killing tensor of Walker & Penrose (1970). E, ~b and K can be identified 
with the energy of the particle as measured at infinity, with its angular 
momentum about the symmetry axis and the square of its total angular 
momentum respectively, as measured at infinity. It is apparent from (1) 
that a geodesic can pass through a point on the symmetry axis 0 -- 0 only 
i f ~  = O. So, for the null geodesics we are concerned with, (1) and (2) become: 

(r 2 + a 2 cos 2 0) 2 0 2 = K -  a2E  z sin 2 0 (3) 

(r  2 + a 2 c o s  2 0)2 t:2 = E 2 ( r  2 + a2)2 _ KA (4) 

We are considering a field in which a > m so d is strictly positive. 
Therefore, if E = 0, (3) and (4) give opposite signs for 0 2 and/:2 on 0 = 0. 
Hence no null geodesics with E = 0 can pass through a point on 0- -0 .  
Choosing a new affine parameter ~' = EA, and replacing K with E2K, (3) 
and (4) become: 

(r 2 + a 2 cos 2 0) 2 0 2 = K -  a 2 sin 2 0 (5) 

(r  2 + a2 cos2 0)2?:2 = @2 + a2)2 _ KA (6) 

where (') now denotes differentiation w.r.t. 2t'. Thus eliminating ;V, the 
projections of the null geodesics onto an (r, 0) submanifold are given by 
the solutions of 

r 2 (r + 
dO] K -  a 2 sin 2 0 (7) 

where we will trace them away from our observer at 0 - -0 ,  r = r0. The 
solution of (7) by separating variables involves incomplete elliptic integrals 
of the first kind. 
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We considered a field for  which a = 2m. With this (7) becomes:  

d-~ = +  

where R = (r z + 4m2) 2 - K(r 2 - 2mr + 4m z) and 0 = K -  4mZsin20. 
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Figure l--The (r, 0) space. 

(8) 

Solutions o f  (8) were computed  numerically for  a selection o f  values o f  
K between 0 and 8m 2 starting f rom the initial point  0 o = 0, r0 = 8m. The 
solutions were viewed in a space o f  cartesian coordinates (x,y) where 

X = (r 2 + 4m2) 1/2 sin 0, y = r cos 0 (9) 

(x,y) were obtained f rom the Kerr-Schi ld  coordinates (T,X,  Y ,Z)  by:  

x = v ~ ( x  2 + y2),  y = z (10) 

the t ransformation between the K e r r - N e w m a n  and Kerr-Schi ld  coordinates 
being (Boyer & Linquist, 1967; Carter, 1968) 

X + i Y = ( r + i a ) e ~ r  Z = r c o s O ,  T = u - r  (11) 

The (r, 0) space consists o f  two sheets I and I I  joined along Sx, where S 
is the projection o f  the ring singularity. The r = constant  and 0 = constant  
lines are parts o f  ellipses and hyperbolas with focus, S. S is given by 
0 = ~r/2, r = 0, i.e. x = 2m, y = 0 (Fig. 1). 
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The computation was handled using an a d  hoc  modification of the 
Runge-Kut ta  routine to cope with the fact that we run into zeros of  R and 
8. The solutions were started with the negative square root in (8) in order 
that they should initially approach the ring. When a zero of R is encountered 
the sign in (8) has to be changed and when a zero in 0 is approached (to 
within certain specified limits) the increments of  0 must be made negative. 
Zeros of  R and (9 can be encountered on the same curve, so a curve can 

Figure  2- -Pro jec t ions  o f  null  geodesics with K </s  

'bounce off '  both a hyperbola and an ellipse. As K is increased, no zero of 
R occurs until the double root r = &. This is the real root of  

r 3 --  3m r  z + 4 m Z r  + 4m 3 = 0 (12) 

and is approximately -0.6344m. The corresponding value of K is: 

K1 = 2rl (r~ + 4rn 2) _ 3.4176m2 (13) 
r 1 - 

Zeros of  6) are met for K <  4m 2 at 0 = s in -X(Kl /2 /2m) .  Referring to 
Fig. 2, K = 0 gives the solution 0 = 0. Increasing K from 0, the projections 
of  the null geodesics are at first nearly straight lines (we must bear in mind 
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of course that the null geodesics themselves are spiralling in the ~b direction, 
this occurring most rapidly near the ring). But as the critical value/s is 
approached the solutions are bent back more and more until they start to 
approach the axis. The reflection at the axis is a consequence of the projec- 
tion. When K is just below K~, the solution bounces off the hyperbola 
0 = sin-~(Kl/2/2m) and is reflected off the axis a number of times. Finally, 
it is reflected offthe axis at such an angle that it does not meet the hyperbola 
again (Fig. 3), the solution being by now indistinguishable from a straight 

Figure 3---/s approaches/s 

line. The corresponding geodesic is spiralling into the symmetry axis and 
out again each time it meets 0 = sin-l(K~/2/2m). The 'zig-zags' of the 
solution close up at first after H and then open out again. 

For K =/(1 the zig-zags close up completely, r decreases asymptotically 
to r~. The null geodesic never reaches r = r~ no matter how large a lapse 
of the affine parameter takes place. Yet from (5) we see that 02 must approach 
(/(1 -4m2s in  20)/(r~ + 4rn 2 cos20) uniformly and therefore does not go to 
zero for all 0:0-<< 0 ~< sin-l(Kl/2/2m).  Furthermore, sin-l(K~/2/2m) is not 
a double root of K1 - 4m 2 sin 2 0 = 0. Hence 0 goes on changing indefinitely 
and the null geodesic ends up spiralling in and out between 0 = 0 and 
0 = sin-l(K~/2/2m) virtually on the surface r = rl (Fig. 4). 
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Figure 4---K = Kt. 

z~  

\ 

Figure 5 - -K just greater than Kx. 
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For K < K~ all solutions end up on the negative sheet. For K > Kl all 
solutions end up on the positive sheet, since R then encounters a zero. 
Running the solutions backwards, photons with K <  KI arrive at our 
observer from the other side of the ring; with K >/s from his own side 
of the ring. From directions towards the ring in which photons with K = K1 
would head, none arrive. These directions would constitute a circle in the 
observer's visual field. 

Figure  6 - - K  > K1: curves meet  H before E. 

For K just greater than/s the solutions behave as in Fig. 5. At E the 
curve bounces off an ellipse and the sign in (8) is changed for the rest of 
the solution---hence it can cross itself. As Kis further increased the solutions 
bend back more and more sharply. A curve meets its 'minimum ellipse' 
sooner and sooner after meeting its 'maximum hyperbola' (Fig. 6). A 
second critical value of  K, found by numerical search, is/s - 3"580m 2. 
The solution for K =  K2 meets H and E simultaneously and the curve 
ceases to be regular at this point and retraces itself in the opposite direction. 
The zeros of R and O at the point are not double so the null geodesic goes 
back through the initial point (Fig. 7). There is no possibility of  it returning 
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Figure 7--The solutions around K =/(2.  0/0r is time-like in the shaded region. 
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along the outward path in the (r, 0, ~b) space as the sign of ~ remains un- 
changed. None the less our observer sees his own reflection! 

For  higher values of  K the solutions meet E before H and reflect towards 
S. H flees down the curve away from E and when K = 4m 2 it has gone off 
to infinity. This solution bounces off the disc r = 0 and is asymptotically 
parallel to an hyperbola given by a value of 0 just less than w/2. 

,. 
%;' 

Figure 8 - -K>4m2:  as K increases to 4.32m 2 solutions cross the equatorial plane 
progressively closer to S. 

For  K just above 4m 2 the solutions begin to cross 0 = w/2, the point where 
this occurs moving rapidly towards S (Fig. 8) until K -  4.32m 2. Then the 
point moves away again, the curves enveloping a region which must remain 
invisible to the observer (Fig. 9). Now 

<3.~ ,~>=_sin20[(r2+a2)2--Asin20 ] r  2 + a 2 c o s  2 0 (14) 

so 0/~$ is time-like when 
(r 2 + a2) 2 

- -  < a 2 sin 2 0 
A 

The circles u = constant, r = constant, 0 = constant are closed time-like 
curves in this region (shaded in Fig. 7--with  a symmetrical half beyond 
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the cut) and closed time-like curves exist connecting any point in this 
region with any other point in the manifold (Carter, 1967, 1968). However, 
on the null geodesics, R >~ 0 and O >~ 0 so (r z + aZ)2/A >~ K a n d  a z sin z 0 ~</f. 
Therefore (r z + a2)2/A >1 a 2 sin 2 0, and the null geodesics pass only through 
regions where 0/0r is space-like save for the one given by K = Kz for which 
(r 2 + a2)Z/A and aZsin 2 0 equal K2 simultaneously at one point and hence 
0/0r is null. Our observer sees himself reflected off the boundary of the 

Figure 9--K > 4"32m2: the solutions envelope a region behind the ring. 

region where aloe is time-like. If_p is the 4-momentum of any physical 
particle in the region where a/ar is time-like then (_p, 0/be) > 0. But for a 
particle in geodesic motion (_p, 0 / 0 r  so the only geodesics which 
can enter this region are those with negative angular momentum. 
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